A Model of Aggregate Operations for Data Analytics over Spatiotemporal Objects

نویسندگان

  • Logan Maughan
  • Mark McKenney
  • Zachary Benchley
چکیده

In this paper, we identify a conceptual framework to explore notions of spatiotemporal aggregate operations over moving objects, and use this framework to discover novel aggregate operators. Specifically, we provide constructs to discover temporal and spatial coverage of a query window that may itself be moving, and identify quantitative properties of entropy relating to the motion of objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing set operations over moving regions using the component moving region model

Many natural phenomena are intuitively represented as spatiotemporal data objects, or moving objects. For example, vehicles, rivers, hurricanes, low pressure systems, areas of high density of foliage, etc align well with a geometric representation, and all change position or shape over time. Moving object models exist that represent real world objects as point, line, and region geometries that ...

متن کامل

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

Indexing and Retrieval of Historical Aggregate Information about Moving Objects

Spatio-temporal databases store information about the positions of individual objects over time. In many applications however, such as traffic supervision or mobile communication systems, only summarized data, like the average number of cars in an area for a specific period, or phones serviced by a cell each day, is required. Although this information can be obtained from operational databases,...

متن کامل

Total and Partial efficiency indexes in data envelopment analysis

Introduction: Data envelopment analysis (DEA) is a data-oriented method for measuring and benchmarking the relative efficiency of peer decision making units (DMUs) with multiple inputs and multiple outputs. DEA was initiated in 1978 when Charnes, Cooper and Rhodes (CCR) demonstrated how to change a fractional linear measure of efficiency into a linear programming format. This non-parametric app...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014